commit b7609d2d6bf0c8ce38fde3295744bb4108e94de9 parent 14764db0ff7f340e843d60cec667d1d2a752c320 Author: Michael Savage <mikejsavage@gmail.com> Date: Sun Nov 20 16:17:49 +0200 Forgot sha2 files! Diffstat:
sha2.cc | | | 831 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
sha2.h | | | 73 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
diff --git a/sha2.cc b/sha2.cc @@ -0,0 +1,831 @@ +/* $OpenBSD: sha2.c,v 1.24 2015/09/11 09:18:27 guenther Exp $ */ + +/* + * FILE: sha2.c + * AUTHOR: Aaron D. Gifford <me@aarongifford.com> + * + * Copyright (c) 2000-2001, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ + */ + +#include <stdint.h> +#include <string.h> + +#include "sha2.h" + +#define explicit_bzero( p, len ) memset( p, 0, len ) + +/* + * UNROLLED TRANSFORM LOOP NOTE: + * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform + * loop version for the hash transform rounds (defined using macros + * later in this file). Either define on the command line, for example: + * + * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c + * + * or define below: + * + * #define SHA2_UNROLL_TRANSFORM + * + */ +#ifndef SHA2_SMALL +#if defined(__amd64__) || defined(__i386__) +#define SHA2_UNROLL_TRANSFORM +#endif +#endif + +/*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ +/* + * BYTE_ORDER NOTE: + * + * Please make sure that your system defines BYTE_ORDER. If your + * architecture is little-endian, make sure it also defines + * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are + * equivilent. + * + * If your system does not define the above, then you can do so by + * hand like this: + * + * #define LITTLE_ENDIAN 1234 + * #define BIG_ENDIAN 4321 + * + * And for little-endian machines, add: + * + * #define BYTE_ORDER LITTLE_ENDIAN + * + * Or for big-endian machines: + * + * #define BYTE_ORDER BIG_ENDIAN + * + * The FreeBSD machine this was written on defines BYTE_ORDER + * appropriately by including <sys/types.h> (which in turn includes + * <machine/endian.h> where the appropriate definitions are actually + * made). + */ +#define LITTLE_ENDIAN 1234 +#define BIG_ENDIAN 4321 +#define BYTE_ORDER LITTLE_ENDIAN +#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) +#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN +#endif + + +/*** SHA-224/256/384/512 Various Length Definitions ***********************/ +/* NOTE: Most of these are in sha2.h */ +#define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8) +#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) +#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) +#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) + +/*** ENDIAN SPECIFIC COPY MACROS **************************************/ +#define BE_8_TO_32(dst, cp) do { \ + (dst) = (uint32_t)(cp)[3] | ((uint32_t)(cp)[2] << 8) | \ + ((uint32_t)(cp)[1] << 16) | ((uint32_t)(cp)[0] << 24); \ +} while(0) + +#define BE_8_TO_64(dst, cp) do { \ + (dst) = (uint64_t)(cp)[7] | ((uint64_t)(cp)[6] << 8) | \ + ((uint64_t)(cp)[5] << 16) | ((uint64_t)(cp)[4] << 24) | \ + ((uint64_t)(cp)[3] << 32) | ((uint64_t)(cp)[2] << 40) | \ + ((uint64_t)(cp)[1] << 48) | ((uint64_t)(cp)[0] << 56); \ +} while (0) + +#define BE_64_TO_8(cp, src) do { \ + (cp)[0] = (src) >> 56; \ + (cp)[1] = (src) >> 48; \ + (cp)[2] = (src) >> 40; \ + (cp)[3] = (src) >> 32; \ + (cp)[4] = (src) >> 24; \ + (cp)[5] = (src) >> 16; \ + (cp)[6] = (src) >> 8; \ + (cp)[7] = (src); \ +} while (0) + +#define BE_32_TO_8(cp, src) do { \ + (cp)[0] = (src) >> 24; \ + (cp)[1] = (src) >> 16; \ + (cp)[2] = (src) >> 8; \ + (cp)[3] = (src); \ +} while (0) + +/* + * Macro for incrementally adding the unsigned 64-bit integer n to the + * unsigned 128-bit integer (represented using a two-element array of + * 64-bit words): + */ +#define ADDINC128(w,n) do { \ + (w)[0] += (uint64_t)(n); \ + if ((w)[0] < (n)) { \ + (w)[1]++; \ + } \ +} while (0) + +/*** THE SIX LOGICAL FUNCTIONS ****************************************/ +/* + * Bit shifting and rotation (used by the six SHA-XYZ logical functions: + * + * NOTE: The naming of R and S appears backwards here (R is a SHIFT and + * S is a ROTATION) because the SHA-224/256/384/512 description document + * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this + * same "backwards" definition. + */ +/* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ +#define R(b,x) ((x) >> (b)) +/* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ +#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) +/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ +#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) + +/* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ +#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) +#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +/* Four of six logical functions used in SHA-224 and SHA-256: */ +#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) +#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) +#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) +#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) + +/* Four of six logical functions used in SHA-384 and SHA-512: */ +#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) +#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) +#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) +#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) + + +/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ +/* Hash constant words K for SHA-224 and SHA-256: */ +static const uint32_t K256[64] = { + 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, + 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, + 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, + 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, + 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, + 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, + 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, + 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, + 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, + 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, + 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, + 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, + 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, + 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, + 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, + 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL +}; + +/* Initial hash value H for SHA-224: */ +static const uint32_t sha224_initial_hash_value[8] = { + 0xc1059ed8UL, + 0x367cd507UL, + 0x3070dd17UL, + 0xf70e5939UL, + 0xffc00b31UL, + 0x68581511UL, + 0x64f98fa7UL, + 0xbefa4fa4UL +}; + +/* Initial hash value H for SHA-256: */ +static const uint32_t sha256_initial_hash_value[8] = { + 0x6a09e667UL, + 0xbb67ae85UL, + 0x3c6ef372UL, + 0xa54ff53aUL, + 0x510e527fUL, + 0x9b05688cUL, + 0x1f83d9abUL, + 0x5be0cd19UL +}; + +/* Hash constant words K for SHA-384 and SHA-512: */ +static const uint64_t K512[80] = { + 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, + 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, + 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, + 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, + 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, + 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, + 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, + 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, + 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, + 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, + 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, + 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, + 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, + 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, + 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, + 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, + 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, + 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, + 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, + 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, + 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, + 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, + 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, + 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, + 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, + 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, + 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, + 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, + 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, + 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, + 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, + 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, + 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, + 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, + 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, + 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, + 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, + 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, + 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, + 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL +}; + +/* Initial hash value H for SHA-512 */ +static const uint64_t sha512_initial_hash_value[8] = { + 0x6a09e667f3bcc908ULL, + 0xbb67ae8584caa73bULL, + 0x3c6ef372fe94f82bULL, + 0xa54ff53a5f1d36f1ULL, + 0x510e527fade682d1ULL, + 0x9b05688c2b3e6c1fULL, + 0x1f83d9abfb41bd6bULL, + 0x5be0cd19137e2179ULL +}; + +/*** SHA-256: *********************************************************/ +void +SHA256Init(SHA2_CTX *context) +{ + memcpy(context->state.st32, sha256_initial_hash_value, + sizeof(sha256_initial_hash_value)); + memset(context->buffer, 0, sizeof(context->buffer)); + context->bitcount[0] = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-256 round macros: */ + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ + BE_8_TO_32(W256[j], data); \ + data += 4; \ + T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +#define ROUND256(a,b,c,d,e,f,g,h) do { \ + s0 = W256[(j+1)&0x0f]; \ + s0 = sigma0_256(s0); \ + s1 = W256[(j+14)&0x0f]; \ + s1 = sigma1_256(s1); \ + T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +void +SHA256Transform(uint32_t state[8], const uint8_t data[SHA256_BLOCK_LENGTH]) +{ + uint32_t a, b, c, d, e, f, g, h, s0, s1; + uint32_t T1, W256[16]; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + f = state[5]; + g = state[6]; + h = state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND256_0_TO_15(a,b,c,d,e,f,g,h); + ROUND256_0_TO_15(h,a,b,c,d,e,f,g); + ROUND256_0_TO_15(g,h,a,b,c,d,e,f); + ROUND256_0_TO_15(f,g,h,a,b,c,d,e); + ROUND256_0_TO_15(e,f,g,h,a,b,c,d); + ROUND256_0_TO_15(d,e,f,g,h,a,b,c); + ROUND256_0_TO_15(c,d,e,f,g,h,a,b); + ROUND256_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 63: */ + do { + ROUND256(a,b,c,d,e,f,g,h); + ROUND256(h,a,b,c,d,e,f,g); + ROUND256(g,h,a,b,c,d,e,f); + ROUND256(f,g,h,a,b,c,d,e); + ROUND256(e,f,g,h,a,b,c,d); + ROUND256(d,e,f,g,h,a,b,c); + ROUND256(c,d,e,f,g,h,a,b); + ROUND256(b,c,d,e,f,g,h,a); + } while (j < 64); + + /* Compute the current intermediate hash value */ + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + state[4] += e; + state[5] += f; + state[6] += g; + state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void +SHA256Transform(uint32_t state[8], const uint8_t data[SHA256_BLOCK_LENGTH]) +{ + uint32_t a, b, c, d, e, f, g, h, s0, s1; + uint32_t T1, T2, W256[16]; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + f = state[5]; + g = state[6]; + h = state[7]; + + j = 0; + do { + BE_8_TO_32(W256[j], data); + data += 4; + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W256[(j+1)&0x0f]; + s0 = sigma0_256(s0); + s1 = W256[(j+14)&0x0f]; + s1 = sigma1_256(s1); + + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 64); + + /* Compute the current intermediate hash value */ + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + state[4] += e; + state[5] += f; + state[6] += g; + state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void +SHA256Update(SHA2_CTX *context, const uint8_t *data, size_t len) +{ + size_t freespace, usedspace; + + /* Calling with no data is valid (we do nothing) */ + if (len == 0) + return; + + usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = SHA256_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + memcpy(&context->buffer[usedspace], data, freespace); + context->bitcount[0] += freespace << 3; + len -= freespace; + data += freespace; + SHA256Transform(context->state.st32, context->buffer); + } else { + /* The buffer is not yet full */ + memcpy(&context->buffer[usedspace], data, len); + context->bitcount[0] += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= SHA256_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + SHA256Transform(context->state.st32, data); + context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; + len -= SHA256_BLOCK_LENGTH; + data += SHA256_BLOCK_LENGTH; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + memcpy(context->buffer, data, len); + context->bitcount[0] += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void +SHA256Pad(SHA2_CTX *context) +{ + unsigned int usedspace; + + usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + memset(&context->buffer[usedspace], 0, + SHA256_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < SHA256_BLOCK_LENGTH) { + memset(&context->buffer[usedspace], 0, + SHA256_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + SHA256Transform(context->state.st32, context->buffer); + + /* Prepare for last transform: */ + memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); + } + } else { + /* Set-up for the last transform: */ + memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Store the length of input data (in bits) in big endian format: */ + BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], + context->bitcount[0]); + + /* Final transform: */ + SHA256Transform(context->state.st32, context->buffer); + + /* Clean up: */ + usedspace = 0; +} + +void +SHA256Final(uint8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) +{ + SHA256Pad(context); + +#if BYTE_ORDER == LITTLE_ENDIAN + int i; + + /* Convert TO host byte order */ + for (i = 0; i < 8; i++) + BE_32_TO_8(digest + i * 4, context->state.st32[i]); +#else + memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); +#endif + explicit_bzero(context, sizeof(*context)); +} + + +/*** SHA-512: *********************************************************/ +void +SHA512Init(SHA2_CTX *context) +{ + memcpy(context->state.st64, sha512_initial_hash_value, + sizeof(sha512_initial_hash_value)); + memset(context->buffer, 0, sizeof(context->buffer)); + context->bitcount[0] = context->bitcount[1] = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-512 round macros: */ + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ + BE_8_TO_64(W512[j], data); \ + data += 8; \ + T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + + +#define ROUND512(a,b,c,d,e,f,g,h) do { \ + s0 = W512[(j+1)&0x0f]; \ + s0 = sigma0_512(s0); \ + s1 = W512[(j+14)&0x0f]; \ + s1 = sigma1_512(s1); \ + T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +void +SHA512Transform(uint64_t state[8], const uint8_t data[SHA512_BLOCK_LENGTH]) +{ + uint64_t a, b, c, d, e, f, g, h, s0, s1; + uint64_t T1, W512[16]; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + f = state[5]; + g = state[6]; + h = state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND512_0_TO_15(a,b,c,d,e,f,g,h); + ROUND512_0_TO_15(h,a,b,c,d,e,f,g); + ROUND512_0_TO_15(g,h,a,b,c,d,e,f); + ROUND512_0_TO_15(f,g,h,a,b,c,d,e); + ROUND512_0_TO_15(e,f,g,h,a,b,c,d); + ROUND512_0_TO_15(d,e,f,g,h,a,b,c); + ROUND512_0_TO_15(c,d,e,f,g,h,a,b); + ROUND512_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 79: */ + do { + ROUND512(a,b,c,d,e,f,g,h); + ROUND512(h,a,b,c,d,e,f,g); + ROUND512(g,h,a,b,c,d,e,f); + ROUND512(f,g,h,a,b,c,d,e); + ROUND512(e,f,g,h,a,b,c,d); + ROUND512(d,e,f,g,h,a,b,c); + ROUND512(c,d,e,f,g,h,a,b); + ROUND512(b,c,d,e,f,g,h,a); + } while (j < 80); + + /* Compute the current intermediate hash value */ + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + state[4] += e; + state[5] += f; + state[6] += g; + state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +void +SHA512Transform(uint64_t state[8], const uint8_t data[SHA512_BLOCK_LENGTH]) +{ + uint64_t a, b, c, d, e, f, g, h, s0, s1; + uint64_t T1, T2, W512[16]; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + f = state[5]; + g = state[6]; + h = state[7]; + + j = 0; + do { + BE_8_TO_64(W512[j], data); + data += 8; + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W512[(j+1)&0x0f]; + s0 = sigma0_512(s0); + s1 = W512[(j+14)&0x0f]; + s1 = sigma1_512(s1); + + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 80); + + /* Compute the current intermediate hash value */ + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + state[4] += e; + state[5] += f; + state[6] += g; + state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +void +SHA512Update(SHA2_CTX *context, const uint8_t *data, size_t len) +{ + size_t freespace, usedspace; + + /* Calling with no data is valid (we do nothing) */ + if (len == 0) + return; + + usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = SHA512_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + memcpy(&context->buffer[usedspace], data, freespace); + ADDINC128(context->bitcount, freespace << 3); + len -= freespace; + data += freespace; + SHA512Transform(context->state.st64, context->buffer); + } else { + /* The buffer is not yet full */ + memcpy(&context->buffer[usedspace], data, len); + ADDINC128(context->bitcount, len << 3); + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= SHA512_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + SHA512Transform(context->state.st64, data); + ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); + len -= SHA512_BLOCK_LENGTH; + data += SHA512_BLOCK_LENGTH; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + memcpy(context->buffer, data, len); + ADDINC128(context->bitcount, len << 3); + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void +SHA512Pad(SHA2_CTX *context) +{ + unsigned int usedspace; + + usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < SHA512_BLOCK_LENGTH) { + memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + SHA512Transform(context->state.st64, context->buffer); + + /* And set-up for the last transform: */ + memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); + } + } else { + /* Prepare for final transform: */ + memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Store the length of input data (in bits) in big endian format: */ + BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], + context->bitcount[1]); + BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], + context->bitcount[0]); + + /* Final transform: */ + SHA512Transform(context->state.st64, context->buffer); + + /* Clean up: */ + usedspace = 0; +} + +void +SHA512Final(uint8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) +{ + SHA512Pad(context); + +#if BYTE_ORDER == LITTLE_ENDIAN + int i; + + /* Convert TO host byte order */ + for (i = 0; i < 8; i++) + BE_64_TO_8(digest + i * 8, context->state.st64[i]); +#else + memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); +#endif + explicit_bzero(context, sizeof(*context)); +} diff --git a/sha2.h b/sha2.h @@ -0,0 +1,73 @@ +/* $OpenBSD: sha2.h,v 1.9 2013/04/15 15:54:17 millert Exp $ */ + +/* + * FILE: sha2.h + * AUTHOR: Aaron D. Gifford <me@aarongifford.com> + * + * Copyright (c) 2000-2001, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $From: sha2.h,v 1.1 2001/11/08 00:02:01 adg Exp adg $ + */ + +#ifndef _SHA2_H +#define _SHA2_H + +#include <stdint.h> + +/*** SHA-256/384/512 Various Length Definitions ***********************/ +#define SHA256_BLOCK_LENGTH 64 +#define SHA256_DIGEST_LENGTH 32 +#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1) +#define SHA512_BLOCK_LENGTH 128 +#define SHA512_DIGEST_LENGTH 64 +#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1) + + +/*** SHA-224/256/384/512 Context Structure *******************************/ +typedef struct _SHA2_CTX { + union { + uint32_t st32[8]; + uint64_t st64[8]; + } state; + uint64_t bitcount[2]; + uint8_t buffer[SHA512_BLOCK_LENGTH]; +} SHA2_CTX; + +void SHA256Init(SHA2_CTX *); +void SHA256Transform(uint32_t state[8], const uint8_t [SHA256_BLOCK_LENGTH]); +void SHA256Update(SHA2_CTX *, const uint8_t *, size_t); +void SHA256Pad(SHA2_CTX *); +void SHA256Final(uint8_t [SHA256_DIGEST_LENGTH], SHA2_CTX *); + +void SHA512Init(SHA2_CTX *); +void SHA512Transform(uint64_t state[8], const uint8_t [SHA512_BLOCK_LENGTH]); +void SHA512Update(SHA2_CTX *, const uint8_t *, size_t); +void SHA512Pad(SHA2_CTX *); +void SHA512Final(uint8_t [SHA512_DIGEST_LENGTH], SHA2_CTX *); + +#endif /* _SHA2_H */