sha2.cc (23913B)
1 /* $OpenBSD: sha2.c,v 1.24 2015/09/11 09:18:27 guenther Exp $ */ 2 3 /* 4 * FILE: sha2.c 5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com> 6 * 7 * Copyright (c) 2000-2001, Aaron D. Gifford 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the copyright holder nor the names of contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 35 */ 36 37 #include <stdint.h> 38 #include <string.h> 39 40 #include "sha2.h" 41 42 #define explicit_bzero( p, len ) memset( p, 0, len ) 43 44 /* 45 * UNROLLED TRANSFORM LOOP NOTE: 46 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 47 * loop version for the hash transform rounds (defined using macros 48 * later in this file). Either define on the command line, for example: 49 * 50 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 51 * 52 * or define below: 53 * 54 * #define SHA2_UNROLL_TRANSFORM 55 * 56 */ 57 #ifndef SHA2_SMALL 58 #if defined(__amd64__) || defined(__i386__) 59 #define SHA2_UNROLL_TRANSFORM 60 #endif 61 #endif 62 63 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ 64 /* 65 * BYTE_ORDER NOTE: 66 * 67 * Please make sure that your system defines BYTE_ORDER. If your 68 * architecture is little-endian, make sure it also defines 69 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 70 * equivilent. 71 * 72 * If your system does not define the above, then you can do so by 73 * hand like this: 74 * 75 * #define LITTLE_ENDIAN 1234 76 * #define BIG_ENDIAN 4321 77 * 78 * And for little-endian machines, add: 79 * 80 * #define BYTE_ORDER LITTLE_ENDIAN 81 * 82 * Or for big-endian machines: 83 * 84 * #define BYTE_ORDER BIG_ENDIAN 85 * 86 * The FreeBSD machine this was written on defines BYTE_ORDER 87 * appropriately by including <sys/types.h> (which in turn includes 88 * <machine/endian.h> where the appropriate definitions are actually 89 * made). 90 */ 91 #define LITTLE_ENDIAN 1234 92 #define BIG_ENDIAN 4321 93 #define BYTE_ORDER LITTLE_ENDIAN 94 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 95 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 96 #endif 97 98 99 /*** SHA-224/256/384/512 Various Length Definitions ***********************/ 100 /* NOTE: Most of these are in sha2.h */ 101 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8) 102 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 103 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 104 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 105 106 /*** ENDIAN SPECIFIC COPY MACROS **************************************/ 107 #define BE_8_TO_32(dst, cp) do { \ 108 (dst) = (uint32_t)(cp)[3] | ((uint32_t)(cp)[2] << 8) | \ 109 ((uint32_t)(cp)[1] << 16) | ((uint32_t)(cp)[0] << 24); \ 110 } while(0) 111 112 #define BE_8_TO_64(dst, cp) do { \ 113 (dst) = (uint64_t)(cp)[7] | ((uint64_t)(cp)[6] << 8) | \ 114 ((uint64_t)(cp)[5] << 16) | ((uint64_t)(cp)[4] << 24) | \ 115 ((uint64_t)(cp)[3] << 32) | ((uint64_t)(cp)[2] << 40) | \ 116 ((uint64_t)(cp)[1] << 48) | ((uint64_t)(cp)[0] << 56); \ 117 } while (0) 118 119 #define BE_64_TO_8(cp, src) do { \ 120 (cp)[0] = (src) >> 56; \ 121 (cp)[1] = (src) >> 48; \ 122 (cp)[2] = (src) >> 40; \ 123 (cp)[3] = (src) >> 32; \ 124 (cp)[4] = (src) >> 24; \ 125 (cp)[5] = (src) >> 16; \ 126 (cp)[6] = (src) >> 8; \ 127 (cp)[7] = (src); \ 128 } while (0) 129 130 #define BE_32_TO_8(cp, src) do { \ 131 (cp)[0] = (src) >> 24; \ 132 (cp)[1] = (src) >> 16; \ 133 (cp)[2] = (src) >> 8; \ 134 (cp)[3] = (src); \ 135 } while (0) 136 137 /* 138 * Macro for incrementally adding the unsigned 64-bit integer n to the 139 * unsigned 128-bit integer (represented using a two-element array of 140 * 64-bit words): 141 */ 142 #define ADDINC128(w,n) do { \ 143 (w)[0] += (uint64_t)(n); \ 144 if ((w)[0] < (n)) { \ 145 (w)[1]++; \ 146 } \ 147 } while (0) 148 149 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 150 /* 151 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 152 * 153 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 154 * S is a ROTATION) because the SHA-224/256/384/512 description document 155 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 156 * same "backwards" definition. 157 */ 158 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ 159 #define R(b,x) ((x) >> (b)) 160 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ 161 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 162 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 163 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 164 165 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ 166 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 167 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 168 169 /* Four of six logical functions used in SHA-224 and SHA-256: */ 170 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 171 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 172 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 173 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 174 175 /* Four of six logical functions used in SHA-384 and SHA-512: */ 176 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 177 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 178 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 179 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 180 181 182 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 183 /* Hash constant words K for SHA-224 and SHA-256: */ 184 static const uint32_t K256[64] = { 185 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 186 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 187 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 188 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 189 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 190 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 191 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 192 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 193 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 194 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 195 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 196 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 197 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 198 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 199 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 200 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 201 }; 202 203 /* Initial hash value H for SHA-224: */ 204 static const uint32_t sha224_initial_hash_value[8] = { 205 0xc1059ed8UL, 206 0x367cd507UL, 207 0x3070dd17UL, 208 0xf70e5939UL, 209 0xffc00b31UL, 210 0x68581511UL, 211 0x64f98fa7UL, 212 0xbefa4fa4UL 213 }; 214 215 /* Initial hash value H for SHA-256: */ 216 static const uint32_t sha256_initial_hash_value[8] = { 217 0x6a09e667UL, 218 0xbb67ae85UL, 219 0x3c6ef372UL, 220 0xa54ff53aUL, 221 0x510e527fUL, 222 0x9b05688cUL, 223 0x1f83d9abUL, 224 0x5be0cd19UL 225 }; 226 227 /* Hash constant words K for SHA-384 and SHA-512: */ 228 static const uint64_t K512[80] = { 229 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 230 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 231 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 232 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 233 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 234 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 235 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 236 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 237 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 238 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 239 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 240 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 241 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 242 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 243 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 244 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 245 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 246 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 247 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 248 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 249 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 250 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 251 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 252 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 253 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 254 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 255 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 256 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 257 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 258 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 259 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 260 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 261 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 262 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 263 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 264 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 265 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 266 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 267 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 268 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 269 }; 270 271 /* Initial hash value H for SHA-512 */ 272 static const uint64_t sha512_initial_hash_value[8] = { 273 0x6a09e667f3bcc908ULL, 274 0xbb67ae8584caa73bULL, 275 0x3c6ef372fe94f82bULL, 276 0xa54ff53a5f1d36f1ULL, 277 0x510e527fade682d1ULL, 278 0x9b05688c2b3e6c1fULL, 279 0x1f83d9abfb41bd6bULL, 280 0x5be0cd19137e2179ULL 281 }; 282 283 /*** SHA-256: *********************************************************/ 284 void 285 SHA256Init(SHA2_CTX *context) 286 { 287 memcpy(context->state.st32, sha256_initial_hash_value, 288 sizeof(sha256_initial_hash_value)); 289 memset(context->buffer, 0, sizeof(context->buffer)); 290 context->bitcount[0] = 0; 291 } 292 293 #ifdef SHA2_UNROLL_TRANSFORM 294 295 /* Unrolled SHA-256 round macros: */ 296 297 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ 298 BE_8_TO_32(W256[j], data); \ 299 data += 4; \ 300 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ 301 (d) += T1; \ 302 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 303 j++; \ 304 } while(0) 305 306 #define ROUND256(a,b,c,d,e,f,g,h) do { \ 307 s0 = W256[(j+1)&0x0f]; \ 308 s0 = sigma0_256(s0); \ 309 s1 = W256[(j+14)&0x0f]; \ 310 s1 = sigma1_256(s1); \ 311 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ 312 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 313 (d) += T1; \ 314 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 315 j++; \ 316 } while(0) 317 318 void 319 SHA256Transform(uint32_t state[8], const uint8_t data[SHA256_BLOCK_LENGTH]) 320 { 321 uint32_t a, b, c, d, e, f, g, h, s0, s1; 322 uint32_t T1, W256[16]; 323 int j; 324 325 /* Initialize registers with the prev. intermediate value */ 326 a = state[0]; 327 b = state[1]; 328 c = state[2]; 329 d = state[3]; 330 e = state[4]; 331 f = state[5]; 332 g = state[6]; 333 h = state[7]; 334 335 j = 0; 336 do { 337 /* Rounds 0 to 15 (unrolled): */ 338 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 339 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 340 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 341 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 342 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 343 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 344 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 345 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 346 } while (j < 16); 347 348 /* Now for the remaining rounds up to 63: */ 349 do { 350 ROUND256(a,b,c,d,e,f,g,h); 351 ROUND256(h,a,b,c,d,e,f,g); 352 ROUND256(g,h,a,b,c,d,e,f); 353 ROUND256(f,g,h,a,b,c,d,e); 354 ROUND256(e,f,g,h,a,b,c,d); 355 ROUND256(d,e,f,g,h,a,b,c); 356 ROUND256(c,d,e,f,g,h,a,b); 357 ROUND256(b,c,d,e,f,g,h,a); 358 } while (j < 64); 359 360 /* Compute the current intermediate hash value */ 361 state[0] += a; 362 state[1] += b; 363 state[2] += c; 364 state[3] += d; 365 state[4] += e; 366 state[5] += f; 367 state[6] += g; 368 state[7] += h; 369 370 /* Clean up */ 371 a = b = c = d = e = f = g = h = T1 = 0; 372 } 373 374 #else /* SHA2_UNROLL_TRANSFORM */ 375 376 void 377 SHA256Transform(uint32_t state[8], const uint8_t data[SHA256_BLOCK_LENGTH]) 378 { 379 uint32_t a, b, c, d, e, f, g, h, s0, s1; 380 uint32_t T1, T2, W256[16]; 381 int j; 382 383 /* Initialize registers with the prev. intermediate value */ 384 a = state[0]; 385 b = state[1]; 386 c = state[2]; 387 d = state[3]; 388 e = state[4]; 389 f = state[5]; 390 g = state[6]; 391 h = state[7]; 392 393 j = 0; 394 do { 395 BE_8_TO_32(W256[j], data); 396 data += 4; 397 /* Apply the SHA-256 compression function to update a..h */ 398 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 399 T2 = Sigma0_256(a) + Maj(a, b, c); 400 h = g; 401 g = f; 402 f = e; 403 e = d + T1; 404 d = c; 405 c = b; 406 b = a; 407 a = T1 + T2; 408 409 j++; 410 } while (j < 16); 411 412 do { 413 /* Part of the message block expansion: */ 414 s0 = W256[(j+1)&0x0f]; 415 s0 = sigma0_256(s0); 416 s1 = W256[(j+14)&0x0f]; 417 s1 = sigma1_256(s1); 418 419 /* Apply the SHA-256 compression function to update a..h */ 420 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 421 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 422 T2 = Sigma0_256(a) + Maj(a, b, c); 423 h = g; 424 g = f; 425 f = e; 426 e = d + T1; 427 d = c; 428 c = b; 429 b = a; 430 a = T1 + T2; 431 432 j++; 433 } while (j < 64); 434 435 /* Compute the current intermediate hash value */ 436 state[0] += a; 437 state[1] += b; 438 state[2] += c; 439 state[3] += d; 440 state[4] += e; 441 state[5] += f; 442 state[6] += g; 443 state[7] += h; 444 445 /* Clean up */ 446 a = b = c = d = e = f = g = h = T1 = T2 = 0; 447 } 448 449 #endif /* SHA2_UNROLL_TRANSFORM */ 450 451 void 452 SHA256Update(SHA2_CTX *context, const uint8_t *data, size_t len) 453 { 454 size_t freespace, usedspace; 455 456 /* Calling with no data is valid (we do nothing) */ 457 if (len == 0) 458 return; 459 460 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 461 if (usedspace > 0) { 462 /* Calculate how much free space is available in the buffer */ 463 freespace = SHA256_BLOCK_LENGTH - usedspace; 464 465 if (len >= freespace) { 466 /* Fill the buffer completely and process it */ 467 memcpy(&context->buffer[usedspace], data, freespace); 468 context->bitcount[0] += freespace << 3; 469 len -= freespace; 470 data += freespace; 471 SHA256Transform(context->state.st32, context->buffer); 472 } else { 473 /* The buffer is not yet full */ 474 memcpy(&context->buffer[usedspace], data, len); 475 context->bitcount[0] += len << 3; 476 /* Clean up: */ 477 usedspace = freespace = 0; 478 return; 479 } 480 } 481 while (len >= SHA256_BLOCK_LENGTH) { 482 /* Process as many complete blocks as we can */ 483 SHA256Transform(context->state.st32, data); 484 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; 485 len -= SHA256_BLOCK_LENGTH; 486 data += SHA256_BLOCK_LENGTH; 487 } 488 if (len > 0) { 489 /* There's left-overs, so save 'em */ 490 memcpy(context->buffer, data, len); 491 context->bitcount[0] += len << 3; 492 } 493 /* Clean up: */ 494 usedspace = freespace = 0; 495 } 496 497 void 498 SHA256Pad(SHA2_CTX *context) 499 { 500 unsigned int usedspace; 501 502 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 503 if (usedspace > 0) { 504 /* Begin padding with a 1 bit: */ 505 context->buffer[usedspace++] = 0x80; 506 507 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 508 /* Set-up for the last transform: */ 509 memset(&context->buffer[usedspace], 0, 510 SHA256_SHORT_BLOCK_LENGTH - usedspace); 511 } else { 512 if (usedspace < SHA256_BLOCK_LENGTH) { 513 memset(&context->buffer[usedspace], 0, 514 SHA256_BLOCK_LENGTH - usedspace); 515 } 516 /* Do second-to-last transform: */ 517 SHA256Transform(context->state.st32, context->buffer); 518 519 /* Prepare for last transform: */ 520 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 521 } 522 } else { 523 /* Set-up for the last transform: */ 524 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 525 526 /* Begin padding with a 1 bit: */ 527 *context->buffer = 0x80; 528 } 529 /* Store the length of input data (in bits) in big endian format: */ 530 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], 531 context->bitcount[0]); 532 533 /* Final transform: */ 534 SHA256Transform(context->state.st32, context->buffer); 535 536 /* Clean up: */ 537 usedspace = 0; 538 } 539 540 void 541 SHA256Final(uint8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) 542 { 543 SHA256Pad(context); 544 545 #if BYTE_ORDER == LITTLE_ENDIAN 546 int i; 547 548 /* Convert TO host byte order */ 549 for (i = 0; i < 8; i++) 550 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 551 #else 552 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); 553 #endif 554 explicit_bzero(context, sizeof(*context)); 555 } 556 557 558 /*** SHA-512: *********************************************************/ 559 void 560 SHA512Init(SHA2_CTX *context) 561 { 562 memcpy(context->state.st64, sha512_initial_hash_value, 563 sizeof(sha512_initial_hash_value)); 564 memset(context->buffer, 0, sizeof(context->buffer)); 565 context->bitcount[0] = context->bitcount[1] = 0; 566 } 567 568 #ifdef SHA2_UNROLL_TRANSFORM 569 570 /* Unrolled SHA-512 round macros: */ 571 572 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ 573 BE_8_TO_64(W512[j], data); \ 574 data += 8; \ 575 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ 576 (d) += T1; \ 577 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 578 j++; \ 579 } while(0) 580 581 582 #define ROUND512(a,b,c,d,e,f,g,h) do { \ 583 s0 = W512[(j+1)&0x0f]; \ 584 s0 = sigma0_512(s0); \ 585 s1 = W512[(j+14)&0x0f]; \ 586 s1 = sigma1_512(s1); \ 587 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ 588 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 589 (d) += T1; \ 590 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 591 j++; \ 592 } while(0) 593 594 void 595 SHA512Transform(uint64_t state[8], const uint8_t data[SHA512_BLOCK_LENGTH]) 596 { 597 uint64_t a, b, c, d, e, f, g, h, s0, s1; 598 uint64_t T1, W512[16]; 599 int j; 600 601 /* Initialize registers with the prev. intermediate value */ 602 a = state[0]; 603 b = state[1]; 604 c = state[2]; 605 d = state[3]; 606 e = state[4]; 607 f = state[5]; 608 g = state[6]; 609 h = state[7]; 610 611 j = 0; 612 do { 613 /* Rounds 0 to 15 (unrolled): */ 614 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 615 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 616 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 617 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 618 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 619 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 620 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 621 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 622 } while (j < 16); 623 624 /* Now for the remaining rounds up to 79: */ 625 do { 626 ROUND512(a,b,c,d,e,f,g,h); 627 ROUND512(h,a,b,c,d,e,f,g); 628 ROUND512(g,h,a,b,c,d,e,f); 629 ROUND512(f,g,h,a,b,c,d,e); 630 ROUND512(e,f,g,h,a,b,c,d); 631 ROUND512(d,e,f,g,h,a,b,c); 632 ROUND512(c,d,e,f,g,h,a,b); 633 ROUND512(b,c,d,e,f,g,h,a); 634 } while (j < 80); 635 636 /* Compute the current intermediate hash value */ 637 state[0] += a; 638 state[1] += b; 639 state[2] += c; 640 state[3] += d; 641 state[4] += e; 642 state[5] += f; 643 state[6] += g; 644 state[7] += h; 645 646 /* Clean up */ 647 a = b = c = d = e = f = g = h = T1 = 0; 648 } 649 650 #else /* SHA2_UNROLL_TRANSFORM */ 651 652 void 653 SHA512Transform(uint64_t state[8], const uint8_t data[SHA512_BLOCK_LENGTH]) 654 { 655 uint64_t a, b, c, d, e, f, g, h, s0, s1; 656 uint64_t T1, T2, W512[16]; 657 int j; 658 659 /* Initialize registers with the prev. intermediate value */ 660 a = state[0]; 661 b = state[1]; 662 c = state[2]; 663 d = state[3]; 664 e = state[4]; 665 f = state[5]; 666 g = state[6]; 667 h = state[7]; 668 669 j = 0; 670 do { 671 BE_8_TO_64(W512[j], data); 672 data += 8; 673 /* Apply the SHA-512 compression function to update a..h */ 674 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 675 T2 = Sigma0_512(a) + Maj(a, b, c); 676 h = g; 677 g = f; 678 f = e; 679 e = d + T1; 680 d = c; 681 c = b; 682 b = a; 683 a = T1 + T2; 684 685 j++; 686 } while (j < 16); 687 688 do { 689 /* Part of the message block expansion: */ 690 s0 = W512[(j+1)&0x0f]; 691 s0 = sigma0_512(s0); 692 s1 = W512[(j+14)&0x0f]; 693 s1 = sigma1_512(s1); 694 695 /* Apply the SHA-512 compression function to update a..h */ 696 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 697 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 698 T2 = Sigma0_512(a) + Maj(a, b, c); 699 h = g; 700 g = f; 701 f = e; 702 e = d + T1; 703 d = c; 704 c = b; 705 b = a; 706 a = T1 + T2; 707 708 j++; 709 } while (j < 80); 710 711 /* Compute the current intermediate hash value */ 712 state[0] += a; 713 state[1] += b; 714 state[2] += c; 715 state[3] += d; 716 state[4] += e; 717 state[5] += f; 718 state[6] += g; 719 state[7] += h; 720 721 /* Clean up */ 722 a = b = c = d = e = f = g = h = T1 = T2 = 0; 723 } 724 725 #endif /* SHA2_UNROLL_TRANSFORM */ 726 727 void 728 SHA512Update(SHA2_CTX *context, const uint8_t *data, size_t len) 729 { 730 size_t freespace, usedspace; 731 732 /* Calling with no data is valid (we do nothing) */ 733 if (len == 0) 734 return; 735 736 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 737 if (usedspace > 0) { 738 /* Calculate how much free space is available in the buffer */ 739 freespace = SHA512_BLOCK_LENGTH - usedspace; 740 741 if (len >= freespace) { 742 /* Fill the buffer completely and process it */ 743 memcpy(&context->buffer[usedspace], data, freespace); 744 ADDINC128(context->bitcount, freespace << 3); 745 len -= freespace; 746 data += freespace; 747 SHA512Transform(context->state.st64, context->buffer); 748 } else { 749 /* The buffer is not yet full */ 750 memcpy(&context->buffer[usedspace], data, len); 751 ADDINC128(context->bitcount, len << 3); 752 /* Clean up: */ 753 usedspace = freespace = 0; 754 return; 755 } 756 } 757 while (len >= SHA512_BLOCK_LENGTH) { 758 /* Process as many complete blocks as we can */ 759 SHA512Transform(context->state.st64, data); 760 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 761 len -= SHA512_BLOCK_LENGTH; 762 data += SHA512_BLOCK_LENGTH; 763 } 764 if (len > 0) { 765 /* There's left-overs, so save 'em */ 766 memcpy(context->buffer, data, len); 767 ADDINC128(context->bitcount, len << 3); 768 } 769 /* Clean up: */ 770 usedspace = freespace = 0; 771 } 772 773 void 774 SHA512Pad(SHA2_CTX *context) 775 { 776 unsigned int usedspace; 777 778 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 779 if (usedspace > 0) { 780 /* Begin padding with a 1 bit: */ 781 context->buffer[usedspace++] = 0x80; 782 783 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 784 /* Set-up for the last transform: */ 785 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); 786 } else { 787 if (usedspace < SHA512_BLOCK_LENGTH) { 788 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); 789 } 790 /* Do second-to-last transform: */ 791 SHA512Transform(context->state.st64, context->buffer); 792 793 /* And set-up for the last transform: */ 794 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); 795 } 796 } else { 797 /* Prepare for final transform: */ 798 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); 799 800 /* Begin padding with a 1 bit: */ 801 *context->buffer = 0x80; 802 } 803 /* Store the length of input data (in bits) in big endian format: */ 804 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], 805 context->bitcount[1]); 806 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], 807 context->bitcount[0]); 808 809 /* Final transform: */ 810 SHA512Transform(context->state.st64, context->buffer); 811 812 /* Clean up: */ 813 usedspace = 0; 814 } 815 816 void 817 SHA512Final(uint8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) 818 { 819 SHA512Pad(context); 820 821 #if BYTE_ORDER == LITTLE_ENDIAN 822 int i; 823 824 /* Convert TO host byte order */ 825 for (i = 0; i < 8; i++) 826 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 827 #else 828 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); 829 #endif 830 explicit_bzero(context, sizeof(*context)); 831 }